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Abstract

Vision encoders have remained comparatively small while language models scaled
from billions to hundreds of billions of parameters. This survey analyzes vision
encoders across 70+ vision-language models from 2023–20251 and finds that train-
ing methodology matters more than encoder size: improvements in loss functions,
data curation, and feature objectives yield larger gains than scaling by an order
of magnitude. Native resolution handling improves document understanding, and
multi-encoder fusion captures complementary features no single encoder provides.
We organize encoders into contrastive, self-supervised, and LLM-aligned families,
providing a taxonomy and practical selection guidance for encoder design and
deployment.

1 Introduction

Vision-language models have achieved strong performance, yet an asymmetry defines their architec-
ture. While language models scaled from billions to hundreds of billions of parameters between 2020
and 2024, vision encoders remained largely frozen in time. The same 300–600 million parameter
CLIP variants that powered early VLMs still dominate production systems today. Chen et al. [15]
observed that “the progress in vision and vision-language foundation models has not kept pace with
LLMs.” This asymmetry raises a fundamental question: does the vision encoder matter?

The answer, as this survey reveals, is nuanced. Encoder choice significantly impacts performance
on vision-centric tasks such as document understanding, spatial reasoning, and fine-grained recog-
nition, while mattering less for tasks where language reasoning dominates. Training methodology
proves more consequential than scale: a 400M-parameter SigLIP 2 encoder outperforms a 5.9B-
parameter InternViT-6B on most VLM benchmarks. Understanding these trade-offs is essential for
practitioners selecting encoders and researchers designing the next generation of vision-language
systems.

The field originated with OpenAI’s CLIP [59] in 2021, which established contrastive image-text
pretraining as the dominant paradigm. LLaVA [47] in 2023 demonstrated that connecting a frozen
CLIP encoder to a language model through a simple projection could yield effective multimodal
capabilities, as illustrated in Figure 1. For the next two years, most VLMs reused the same CLIP
ViT-L/14 encoder while scaling only the language component.

Recent work has begun addressing this gap. Google’s SigLIP [90] replaced CLIP’s softmax-based
contrastive loss with a sigmoid formulation that improved scaling and zero-shot performance. Shang-
hai AI Lab’s InternViT-6B [15] scaled the vision encoder to six billion parameters. By 2025,
SigLIP 2 [72] added multilingual capabilities and dense features, becoming the encoder of choice
for Qwen3-VL and Gemma 3. Cambrian-1 [71] showed that combining multiple encoders captures

1This survey covers only publicly documented architectures. Proprietary systems including GPT-5, Gemini
2.5/3, and Claude Opus 4.5 do not disclose vision encoder details. Benchmark results are drawn from published
papers with varying evaluation protocols.
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Figure 1: The canonical VLM architecture. An input image is divided into patches and processed by
a vision encoder (e.g., CLIP, SigLIP) that converts pixels into visual tokens. A projection module
(MLP or Q-Former) maps these tokens into the language model’s embedding space, where they are
concatenated with text tokens. The language model generates text output conditioned on both visual
and textual inputs.

complementary visual information, while EVE [21] demonstrated that encoder-free architectures
achieve competitive performance.

Research Questions

❶ Which training paradigm (contrastive, self-supervised, LLM-aligned) yields the best
VLM performance?
❷ When does encoder scale matter, and when does training methodology dominate?
❸ How should variable-resolution images be handled at the encoder level?
❹ When do multi-encoder approaches outperform single encoders?
❺ What is the trajectory of vision encoding: specialized encoders or encoder-free unifica-
tion?

Contributions. This survey makes four contributions: (1) We present the first systematic taxonomy
of vision encoders for VLMs, organizing 70+ models by training paradigm, integration architecture,
and resolution strategy. (2) We provide quantitative evidence that training methodology improvements
outperform parameter scaling: SigLIP 2 at 400M parameters exceeds InternViT-6B at 5.9B on
most VLM tasks. (3) We compile reference tables (Appendix A) enabling encoder selection based on
application requirements. (4) We identify the emerging tension between specialized encoders and
encoder-free architectures as the field’s central design question.

The remainder of this survey is organized as follows. Section 2 establishes architectural foundations
and training paradigms, addressing ❶❷❸. Section 3 documents encoder adoption across VLM
families, providing context for ❹❺. Section 4 answers all five questions through quantitative
comparison. Section 5 synthesizes findings into practical guidance. Table 1 provides a reference of
VLMs organized by encoder family.

Table 1: VLMs Organized by Vision Encoder Family. Covers models through late 2025; includes
peer-reviewed publications, arXiv preprints with released code/weights, and official technical reports.
Unreleased models marked as preview. ∗Encoder trained from scratch by the model developers.

Model Vision Encoder Enc.
Params

Date Organization

OpenAI CLIP Family [59]

LLaVA [47] CLIP ViT-L/14 304M 2023/04 UW-Madison
LLaVA-1.5 [47] CLIP ViT-L/14-336 304M 2023/10 UW-Madison

Continued on next page
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Table 1 – continued
Model Vision Encoder Enc.

Params
Date Organization

LLaVA-
NeXT [46]

CLIP ViT-L/14 304M 2024/01 ByteDance

Phi-3.5-Vision [1] CLIP ViT-L/14 304M 2024/04 Microsoft
Phi-4-Vision [1] CLIP ViT-L/14+ 304M 2024/12 Microsoft
MM1 [53] CLIP ViT-H/14 632M 2024/03 Apple
MM1.5 [53] CLIP ViT-H/14 632M 2024/09 Apple
Ferret [86] CLIP ViT-L/14 304M 2023/10 Apple
Ferret-v2 [92] CLIP ViT-L/14 304M 2024/04 Apple
Yi-VL [87] CLIP ViT-H/14 632M 2024/03 01.AI
Molmo [19] CLIP ViT-L/14 304M 2024/09 AI2
VL-Mamba [58] CLIP ViT-L/14 304M 2024/03 CASIA/Adelaide

Google SigLIP Family [90, 72]

LLaVA-
OneVision [40]

SigLIP-SO400M 400M 2024/08 ByteDance

DeepSeek-
VL [48]

SigLIP-L + SAM-B 393M 2024/03 DeepSeek

DeepSeek-
VL2 [81]

SigLIP-SO400M 400M 2024/12 DeepSeek

PaliGemma [9] SigLIP-SO400M 400M 2024/07 Google
PaliGemma 2 [9] SigLIP-SO400M 400M 2024/12 Google
Gemma 3 [25] SigLIP-SO400M 400M 2025/03 Google
Qwen3-VL [6] SigLIP 2 SO400M 400M 2025/11 Alibaba
Idefics2 [37] SigLIP-SO400M 400M 2024/04 HuggingFace
Idefics3 [36] SigLIP-SO400M 400M 2024/08 HuggingFace
SmolVLM [52] SigLIP-SO400M 400M 2025/04 HuggingFace
MiniCPM-V
2.6 [84]

SigLIP-SO400M 400M 2024/08 Tsinghua

Baichuan-
Omni [43]

SigLIP-SO400M-384 400M 2024/10 Baichuan

VideoLLaMA
3 [91]

SigLIP/DFN 400M 2025/01 DAMO Academy

MiniCPM-V
4.5 [84]

SigLIP +
3D-Resampler

400M 2025/09 Tsinghua

Jina-VLM [35] SigLIP 2 SO400M 400M 2025/12 Jina AI
Janus-Pro [13] SigLIP-L 303M 2025/01 DeepSeek

EVA-CLIP Family [68]

CogVLM [78] EVA2-CLIP-E 4.4B 2023/11 Tsinghua
CogVLM2 [30] EVA2-CLIP-E 4.4B 2024/05 Tsinghua
Emu [69] EVA-CLIP-g 1B 2023/07 BAAI
Emu2 [66] EVA-CLIP-E 4.4B 2023/12 BAAI

InternViT Family [15]

InternVL 1.0 [15] InternViT-6B 6B 2023/12 Shanghai AI Lab
InternVL 1.5 [15] InternViT-6B 6B 2024/04 Shanghai AI Lab
InternVL 2.0 [14] InternViT-300M/6B 300M–

6B
2024/07 Shanghai AI Lab

InternVL 2.5 [14] InternViT-300M/6B 300M–
6B

2024/12 Shanghai AI Lab

InternVL 3.5 [77] InternViT + ViR 300M–
6B

2025/08 Shanghai AI Lab

NVLM-
D/X/H [17]

InternViT-6B 6B 2024/09 NVIDIA

Continued on next page

3



Table 1 – continued
Model Vision Encoder Enc.

Params
Date Organization

Custom/Proprietary Encoders
Qwen-VL [4] ViT-bigG 1.9B 2023/08 Alibaba
Qwen2-VL [76] NaViT 675M 2024/10 Alibaba
GLM-4.1V-
Thinking [26]

AIMv2-Huge 600M 2025/07 Zhipu AI

GLM-4.5V [26] AIMv2-Huge 600M 2025/08 Zhipu AI
MiniMax-VL-
01 [39]

ViT∗ 303M 2025/01 MiniMax

Qwen2.5-VL [5] NaViT 675M 2025/02 Alibaba
Llama
3.2-Vision [27]

ViT-H/14 632M 2024/09 Meta

Llama 4 MetaCLIP – 2025/04 Meta
Kimi-VL [34] MoonViT 400M 2025/04 Moonshot AI
DeepSeek-
OCR [80]

DeepEncoder 380M 2025/10 DeepSeek

Nemotron Nano
V2 VL [20]

c-RADIOv2-VLM-H 655M 2025/11 NVIDIA

FastVLM [74] FastViTHD 125M 2024/12 Apple
Pixtral 12B [2] ViT∗ 400M 2024/10 Mistral
Ovis2.5 [49] NaViT 300M 2025/08 Alibaba
MiMo-VL [89] NaViT 675M 2025/06 Xiaomi
Step-3 [65] EVA-CLIP 5B 5B 2025/07 StepFun
QVQ-72B-
Preview [5]

NaViT 675M 2024/12 Alibaba

Multi-Encoder Approaches
Cambrian-1 [71] CLIP, SigLIP,

ConvNeXt, DINOv2
1.9B 2024/06 NYU

Eagle [63] CLIP, ConvNeXt,
Pix2Struct, EVA-02

1.8B 2024/08 NVIDIA

Cobra [94] DINOv2+SigLIP 704M 2024/03 Westlake U.

Encoder-Free / Native Multimodal
Fuyu-8B [8] Linear proj. – 2023/10 Adept
EVE [21] PEL – 2024/06 BAAI
EVEv2 [22] PEL – 2025/02 BAAI
ELVA [42] Token merge – 2025/03 CAS
Chameleon [10] VQ-VAE – 2024/05 Meta
Emu3 [79]/3.5 VQ-VAE – 2024/09 BAAI

2 Training Paradigms and Architectural Foundations

This section establishes the foundations for understanding vision encoders in VLMs. We first clarify
scope and definitions, then cover the Vision Transformer architecture, three training paradigms
(contrastive, self-supervised, LLM-aligned), connector designs, resolution strategies, and alternative
architectures.
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2.1 Scope and Definitions

Definition: Vision Encoder for VLMs
A vision encoder is a neural network component that transforms pixel inputs into dense
vector representations consumed by a language model. It operates before the vision-language
connector and produces a sequence of visual tokens Zv ∈ RN×D, where N is the number of
spatial tokens and D is the embedding dimension.

This survey focuses on vision encoders within vision-language model pipelines. We distinguish
vision encoders from related but distinct components:

Vision Encoder vs. Image Tokenizer. Discrete tokenizers like VQ-VAE [73] map images to code-
book indices for autoregressive generation (Chameleon, Emu3). We cover these in Section 3.7 as
encoder-free alternatives but focus primarily on continuous-output encoders.

Vision Encoder vs. Raw Pixel Embedding. Encoder-free architectures (Fuyu-8B, EVE) project
patches directly into language model space without pretrained vision components. These bypass the
encoder entirely; we discuss them in Section 3.7.

Vision Encoder vs. Generation Encoder. Image generation models (Stable Diffusion, DALL-E)
use encoders for reconstruction objectives. Our scope is encoders optimized for understanding within
VLM pipelines, not generation.

2.2 Vision Transformer Architecture

The vision transformer (ViT) architecture underlies nearly all modern vision encoders for VLMs.
A ViT first partitions an input image x ∈ RH×W×C into a sequence of non-overlapping patches
{xi

p}Ni=1, where N = HW/P 2 for patch size P . These patches are linearly projected and combined
with positional embeddings:

z0 = [xcls;Ex1
p;Ex2

p; . . . ;ExN
p ] +Epos (1)

where E ∈ RD×(P 2·C) is the patch embedding projection, xcls is a learnable class token, and
Epos ∈ R(N+1)×D provides positional information. The resulting sequence is processed through L
transformer layers, each applying multi-head self-attention followed by a feed-forward network.

This architecture produces N spatial tokens plus one class token that capture visual information at
different image locations, as shown in Figure 2. For VLM applications, these tokens are projected into
the language model’s embedding space, enabling the language model to attend to visual features. The
patch size P and image resolution together determine the number of visual tokens: a 336×336 image
with P = 14 produces 576 tokens, while higher resolutions or smaller patches yield proportionally
more tokens with associated computational costs.

2.3 Contrastive Learning

Contrastive training, pioneered by CLIP [59], trains vision and text encoders jointly on image-text
pairs, learning to align matching pairs in a shared embedding space. Given a batch B = {(Ii,Ti)}|B|

i=1
of image-text pairs, let xi = f(Ii)/∥f(Ii)∥ and yi = g(Ti)/∥g(Ti)∥ denote the normalized
embeddings from the image encoder f and text encoder g. The CLIP objective minimizes:

LCLIP = − 1

2|B|

|B|∑
i=1

[
log

eτx
⊤
i yi∑|B|

j=1 e
τx⊤

i yj

+ log
eτx

⊤
i yi∑|B|

j=1 e
τx⊤

j yi

]
(2)

where τ is a learnable temperature. This produces encoders that excel at semantic understanding and
zero-shot recognition, as representations are directly grounded in natural language.

OpenAI’s CLIP ViT-L/14, with 304 million parameters trained on 400 million image-text pairs,
became the standard choice for early VLMs due to its zero-shot transfer capabilities. CLIP’s con-
trastive objective optimizes for image-level semantics rather than fine-grained spatial understanding,
a limitation that later encoders address.
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Figure 2: Vision Transformer (ViT) architecture. An input image is divided into a grid of patches,
which are flattened and linearly projected into embeddings. A learnable [CLS] token is prepended,
and positional embeddings are added to form the token sequence. This sequence passes through L
transformer encoder blocks, each containing multi-head self-attention and MLP layers with residual
connections and layer normalization. The output consists of spatial tokens plus the [CLS] token for
downstream tasks.

The BAAI research group addressed scaling challenges with EVA-CLIP [68], which combined the
EVA vision transformer architecture with CLIP-style contrastive training. Their largest model,
EVA-02-CLIP-E/14+ with five billion parameters, achieved 82.0% zero-shot top-1 accuracy on Ima-
geNet. The subsequent EVA-CLIP-18B [67] pushed the scale further to eighteen billion parameters,
though empirical studies found diminishing returns in VLM contexts.

Google’s SigLIP [90] reconsidered the training loss rather than simply scaling. CLIP’s softmax-
based contrastive loss creates artificial competition within each batch. SigLIP replaced this with a
sigmoid loss that treats each image-text pair independently:

LSigLIP = − 1

|B|

|B|∑
i=1

|B|∑
j=1

log σ
(
zij(τx

⊤
i yj + b)

)
(3)

where zij = 1 for positive pairs and −1 otherwise. This enables stable training at larger batch sizes
and simplified distributed training. The SigLIP-SO400M variant became a common choice for VLMs
including LLaVA-OneVision and DeepSeek-VL2.

SigLIP 2 [72], released in February 2025, unifies multiple training objectives into a staged recipe.
The first stage combines the sigmoid loss with LocCa [75], a decoder-based objective for captioning
and referring expression comprehension. A lightweight transformer decoder with cross-attention to
visual features is trained for three tasks: image captioning, referring expression prediction (predicting
bounding boxes for region descriptions), and grounded captioning (predicting region-specific captions
given coordinates). The second stage adds self-supervised losses from SILC [55] and TIPS [51]:
local-to-global self-distillation where partial image views match the full-image teacher representation,
and masked prediction where the student reconstructs teacher features at masked patch locations. The
complete SigLIP 2 objective during the second stage is:

LSigLIP2 = Lsig + LLocCa + α(Ldistill + Lmask) (4)
where α is a weighting factor that varies by model size. SigLIP 2 yields improved dense features
for segmentation and depth estimation while maintaining strong zero-shot classification. It trains on
multilingual data spanning over one hundred languages and has been adopted by Qwen3-VL, Gemma
3, and many 2025 frontier models.

MetaCLIP 2 [16], released in July 2025, provides the first recipe for training CLIP from scratch
on worldwide web-scale image-text pairs. Through scalable substring matching and language-
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specific metadata curation that balances head and tail concepts across 300+ languages, MetaCLIP
2 ViT-H/14 surpasses English-only counterparts by 0.8% on ImageNet and achieves the highest
reported scores on multilingual benchmarks including CVQA (57.4%), Babel-ImageNet (50.2%),
and XM3600 (64.3% image-to-text retrieval), addressing the “curse of multilinguality” common in
multilingual models.

TULIP [70] unifies contrastive and generative objectives, combining image-text contrastive learning
with image-image contrastive learning and reconstruction regularization to address CLIP’s weakness
on vision-centric tasks requiring high-fidelity image understanding (counting, depth estimation,
fine-grained recognition). TULIP scales to over 1B parameters and achieves up to 2× improvement
over SigLIP on RxRx1 in few-shot classification and 3× higher scores on MMVP, showing that
unified training objectives can better preserve visual details while maintaining semantic alignment.

Discussion. Contrastive training established vision-language alignment as the dominant paradigm,
but its limitations motivated the alternatives discussed next: batch size requirements, English-centric
data, and image-level rather than dense features. The evolution from CLIP to SigLIP to SigLIP 2
demonstrates that training objective improvements (sigmoid loss, multilingual data, dense supervision)
yield gains that parameter scaling alone cannot match.

2.4 Self-Supervised Learning

Self-supervised methods train vision encoders without language supervision, typically using self-
distillation or masked prediction. DINOv2 [56] employs a student-teacher framework where teacher
parameters θt are an exponential moving average of student parameters θs:

θt ← λθt + (1− λ)θs (5)

The image-level self-distillation objective minimizes cross-entropy between student and teacher
outputs over different augmented views:

LDINO = −
∑
v∈Vg

pt(v) logps(v) (6)

where Vg denotes global crop views, and pt, ps are softmax-normalized prototype scores from
teacher and student heads respectively. DINOv2 extends this with a patch-level masked prediction
objective (iBOT), where random input patches are masked from the student but visible to the teacher:

LiBOT = −
∑
i∈M

pi
t logp

i
s (7)

whereM is the set of masked patch indices. This patch-level objective encourages fine-grained local
representations complementing the global image-level loss.

DINOv2 also employs the KoLeo regularizer [61], derived from the Kozachenko-Leonenko differential
entropy estimator, which encourages features to span the embedding space uniformly:

LKoLeo = − 1

n

n∑
i=1

log(dn,i), dn,i = min
j ̸=i
∥xi − xj∥ (8)

where dn,i is the distance to the nearest neighbor in the batch. This regularizer prevents representation
collapse and improves downstream transfer. The complete DINOv2 objective combines these terms:
L = LDINO + LiBOT + LKoLeo.

DINOv2 produces representations that transfer well to dense prediction tasks including segmentation,
depth estimation, and fine-grained structure recognition, despite receiving no explicit supervision for
these tasks. Language-supervised encoders like SigLIP excel at semantic understanding and OCR,
while self-supervised encoders perform better on vision-centric tasks involving spatial relationships,
object counting, and depth perception. This complementarity motivates multi-encoder approaches
(Section 3.6).

Integrating self-supervised encoders into VLMs requires bridging the gap between SSL representa-
tions and language model embeddings. Three strategies exist: frozen encoder with learned projection,
contrastive alignment before VLM integration, and joint fine-tuning where the SSL encoder adapts
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during VLM training. The Web-SSL study [23] shows that with sufficient training data diversity,
frozen SSL encoders with learned projections approach contrastive encoder performance.

DINOv3 [64], released in August 2025, scaled self-supervised vision transformers to seven billion
parameters through Gram anchoring, which stabilizes training at large scales by anchoring represen-
tations to a fixed reference distribution.

Discussion. Self-supervised encoders like DINOv2 excel at spatial tasks but lack text alignment,
requiring adaptation for VLM integration. Their strength in dense prediction complements contrastive
encoders’ semantic alignment, motivating the multi-encoder approaches discussed in Section 3.6.
The gap between self-supervised and contrastive encoders on VLM tasks suggests that text alignment
during pretraining remains essential for strong vision-language performance.

2.5 LLM-Aligned Training

LLM-aligned training develops vision encoders specifically for VLM integration through progressive
alignment, as illustrated in Figure 3. The training proceeds in two stages: first, contrastive pretraining
aligns the vision encoder with a text encoder; then, generative fine-tuning jointly optimizes the vision
encoder with a language model. The generative objective trains the model to predict text tokens
conditioned on visual features:

Lgen = −
T∑

t=1

logP (wt|w<t,Zv; θv, θl) (9)

where Zv denotes visual features from the vision encoder with parameters θv, and θl are the lan-
guage model parameters. This joint optimization produces encoders architecturally compatible with
language models.

The InternVL project [15] developed InternViT-6B, scaling the vision encoder to six billion
parameters through progressive alignment across contrastive, generative, and supervised fine-tuning
stages. Section 3.4 details this approach. They also released InternViT-300M, which retained much
of the capability at lower computational cost.

SAILViT [85] addresses a challenge in LLM-aligned encoders: standard ViTs trained through con-
trastive learning or self-supervision struggle with connector-based co-training due to parameter
initialization conflicts and modality semantic gaps. SAILViT uses gradual feature refinement through
three stages: coarse-grained modality alignment, fine-grained feature refinement, and world knowl-
edge infusion. This approach improves OpenCompass benchmark performance when integrated with
existing MLLMs.

Google’s NaViT [18] addressed the fixed resolution constraint of standard vision transformers. NaViT
introduced “Patch n’ Pack,” which packs variable-length patch sequences from multiple images into
a single training example. For images with patch counts {n1, n2, . . . , nk}, the packed sequence has
length:

Lpack =

k∑
i=1

ni, where ni =

⌊
Hi

P

⌋
·
⌊
Wi

P

⌋
(10)

This preserves native resolution and aspect ratio while maintaining computational efficiency through
sequence packing.

Qwen2-VL [76] introduced Multimodal Rotary Position Embedding (M-RoPE) to handle positional
information across modalities. Standard 1D-RoPE in language models encodes only sequential
position, but M-RoPE decomposes the rotary embedding into three components: temporal, height,
and width.

M-RoPE(x, t, h, w) = x⊙ [cos(θt), cos(θh), cos(θw)] + x′ ⊙ [sin(θt), sin(θh), sin(θw)] (11)

where θt, θh, θw are position-dependent rotation angles for temporal, height, and width dimensions
respectively, and x′ is a rotated version of x. For text, all three components share identical position
IDs, reducing to standard 1D-RoPE. For images, temporal IDs remain constant while height and
width IDs reflect spatial position. For video, temporal IDs increment per frame. This decomposition
enables the model to extrapolate to longer sequences during inference by keeping position ID values
smaller than equivalent 1D encodings.
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Figure 3: Vision encoder training paradigms. (A) Contrastive: image and text encoders are jointly
trained on image-text pairs using a contrastive loss that aligns matching pairs (CLIP, SigLIP). (B) Self-
supervised: a student network learns from a teacher network (updated via EMA) using augmented
views of the same image, without text supervision (DINOv2). (C) LLM-aligned: the vision encoder
is trained with a language model using generative objectives; progressive training may include an
initial contrastive stage (InternViT).

Table 2 summarizes the key characteristics of foundation encoders. The choice depends on the target
application: SigLIP 2 offers the best general-purpose performance, DINOv2 excels when spatial
understanding is paramount, InternViT provides the deepest integration with language models, and
NaViT-style architectures are preferred when preserving fine image details matters most.

Table 2: Foundation Vision Encoders for VLMs. Parameters indicate vision encoder size only.
Resolution uses “/” for discrete checkpoint options (e.g., 224/336 = models available at either
resolution) and “–” for supported ranges.

Model Date Org. Params Resolution Key Innovation Ref.
Contrastive (Language-Supervised)
CLIP ViT-L/14 Jan 2021 OpenAI 304M 224/336 Contrastive pretraining [59]
MetaCLIP Sep 2023 Meta 304M–632M 224/336 Balanced data curation [82]
EVA-CLIP Mar 2023 BAAI 1B–5B 224/336 Scaled EVA + improved training [68]
SigLIP-SO400M Mar 2023 Google 400M 384 Sigmoid loss, batch flexibility [90]
SigLIP 2 Feb 2025 Google 400M–1B 256/384/512 Multilingual, dense features [72]

Self-Supervised
DINOv2-L/g Apr 2023 Meta 304M–1.1B 518 Self-distillation, dense features [56]
DINOv3 Aug 2025 Meta 7B 518 Gram anchoring, stable scaling [64]
Web-SSL Apr 2025 Meta/NYU up to 7B 224–518 SSL matching CLIP at scale [23]

Distillation-Based
AM-RADIO Jun 2024 NVIDIA 655M 224–768 Multi-teacher (CLIP+DINOv2+SAM) [60]
RADIOv2.5 Jun 2025 NVIDIA 655M 224–1024 Improved training, multi-resolution [29]

LLM-Aligned / Native Resolution
InternViT-6B Dec 2023 Shanghai AI 6B 448 LLM-aligned architecture [15]
NaViT Jul 2023 Google Various Native Patch n’ Pack, any resolution [18]
UniViTAR Apr 2025 Meituan 300M–1B Native Resolution curriculum learning [57]

Autoregressive
AIMv2 Nov 2024 Apple 300M–2.7B 224/336/448 Multimodal autoregressive pretraining [24]

Discussion. LLM-aligned encoders like InternViT represent a paradigm shift from adapting
general-purpose encoders to building vision components specifically for language model integration.
The progressive alignment strategy and LLM-supervised training yield strong VLM performance, but
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the 20× parameter increase over standard encoders raises efficiency questions. Whether purpose-built
encoders justify their cost depends on application requirements, as we quantify in Section 4.

Paradigm Comparison. Table 3 summarizes the three training paradigms. Contrastive training
dominates general-purpose applications due to text alignment and zero-shot transfer. Self-supervised
encoders excel at dense prediction but require additional alignment for VLM integration. LLM-
aligned encoders achieve tight vision-language coupling at the cost of higher training complexity.

Table 3: Training Paradigm Comparison for Vision Encoders
Contrastive Self-Supervised LLM-Aligned

Supervision Image-text pairs Images only LLM + images
Text alignment Native Requires bridging Native
Dense features Weak (image-level) Strong Variable
Training cost High (batch size) Moderate Very high
Scale 400M–4B 300M–7B 300M–6B
Best for General VLM Spatial tasks, segmenta-

tion
Deep VLM integration

Examples CLIP, SigLIP DINOv2, MAE InternViT

2.6 Encoder Output Integration

How vision encoder outputs are consumed affects encoder design. The connector module transforms
visual features into a format compatible with language model token embeddings, and its requirements
influence encoder output dimensionality, token count, and representation structure.

The simplest approach, pioneered by LLaVA [47], uses a linear projection or shallow MLP to map
visual features directly into the language model’s embedding space. Let Zv ∈ RN×Dv denote the
sequence of visual token embeddings from the vision encoder, where N is the number of visual
tokens and Dv is the encoder’s hidden dimension. The two-layer MLP projector computes:

Hv = W2 · GELU(W1 · Zv) (12)

where W1 ∈ RDh×Dv and W2 ∈ RDl×Dh project through a hidden dimension Dh to the language
model dimension Dl. Liu et al. demonstrated that a single linear layer, trained on 600,000 image-text
pairs, could enable visual reasoning when connecting a frozen CLIP encoder to a pretrained language
model, challenging assumptions that complex cross-modal fusion mechanisms were necessary.

BLIP-2 [41] introduced the Q-Former, a more sophisticated connector that uses learnable query
tokens to extract relevant information from visual features through cross-attention. Given M learnable
query embeddings Q ∈ RM×D and visual features Zv , the Q-Former applies cross-attention:

Hv = softmax
(
QWQ(ZvWK)⊤√

Dk

)
ZvWV (13)

where WQ,WK ,WV are learned projections. The Q-Former compresses visual information into
exactly M tokens regardless of image resolution, providing control over computational cost. This
compression can discard fine-grained details important for tasks like document understanding or
visual grounding.

The Flamingo architecture [3] employed a Perceiver Resampler that compresses visual information
through learned queries, integrating visual tokens into the language model through gated cross-
attention layers interleaved with the transformer blocks. This design allows visual information to
influence language model processing at multiple layers rather than only at the input. The Idefics
models from HuggingFace adopted this approach for open-source VLMs.

More recent work has explored direct cross-attention mechanisms where language model tokens
attend to visual features without intermediate compression. NVLM [17] conducted an extensive
comparison of connector paradigms (Figure 4): decoder-only architectures concatenate visual and text
tokens for unified self-attention processing; cross-attention architectures integrate visual information
through dedicated attention layers where text tokens attend to visual features; and hybrid architectures
combine both approaches. Their findings suggest that decoder-only approaches with careful token
handling can match or exceed cross-attention designs while being simpler to implement and scale.
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Figure 4: Vision-language connector architectures. (A) MLP Projection: visual tokens pass through
a 2-layer MLP, preserving token count (N tokens in, N tokens out) for direct concatenation with
text tokens (LLaVA). (B) Q-Former: learnable query tokens (M=32) cross-attend to visual features,
compressing variable-length inputs to fixed output size (BLIP-2). (C) Cross-Attention: visual tokens
serve as keys/values in cross-attention layers interleaved within the LLM, allowing visual information
to influence processing at multiple depths (Flamingo).

The Ovis architecture [50] identified a tension in existing connector designs: visual features from
encoders like CLIP are continuous vectors, while language models operate on discrete token embed-
dings drawn from a learned vocabulary. This structural mismatch may limit how effectively visual
information can be integrated. Ovis addressed this through a visual embedding table that quantizes
visual features into discrete codes, structurally aligning visual and textual representations. This
approach achieved strong results on vision-language benchmarks with a simpler overall architecture.

Empirical studies, particularly MM1’s ablations [53], indicate that connector design has modest
impact compared to encoder choice and training data quality. Simple MLP projectors match more
complex designs when other factors are controlled. This finding has refocused research on encoder
improvements: if connectors add little value, encoder representation quality becomes the primary
determinant of VLM capability.

2.7 Resolution and Token Efficiency

Vision encoder design must balance image resolution against token count. Higher resolution preserves
fine details but produces more tokens, increasing computational cost in downstream processing. This
tradeoff has driven architectural innovations within encoders themselves.

Early VLMs processed all images at fixed resolutions, typically 224×224 or 336×336 pixels. Tile-
based methods divide high-resolution images into grids of patches. For an image of size H ×W , the
optimal grid configuration (nh, nw) minimizes aspect ratio distortion:

(n∗
h, n

∗
w) = arg min

(nh,nw)∈G

∣∣∣∣HW − nh

nw

∣∣∣∣ (14)

where G is a predefined set of valid grid configurations. LLaVA-NeXT introduced the AnyRes
approach implementing this framework. The total number of visual tokens scales as Ntokens =
(nh · nw + 1) · (Ptile/p)

2 where Ptile is the tile size, p is the patch size, and the +1 accounts for the
global thumbnail view.

InternVL’s dynamic tiling added Pixel Shuffle operations that reduce token counts. Given feature
maps Z ∈ RH′×W ′×D, Pixel Shuffle with downsampling factor r rearranges spatial positions into
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the channel dimension:

Z′
i,j = concat [Zri+a,rj+b]a,b∈{0,...,r−1} ∈ Rr2D (15)

reducing the sequence length by factor r2 while preserving information through increased channel
dimension. SmolVLM [52] uses aggressive pixel shuffle with r = 3, achieving 9× compression.
Qwen2-VL’s “Naive Dynamic Resolution” takes an alternative approach, processing images at native
resolutions into proportionally varying token counts rather than compressing post-hoc.

Beyond pixel shuffle, other compression strategies have emerged. Apple’s FastVLM [74] uses a
hybrid CNN-ViT architecture (FastViTHD) that produces 3.2× fewer tokens than standard ViTs
through efficient multi-scale feature extraction. PPE [33] enables 10× compression while preserving
spatiotemporal structure. PS3 [62] scales vision pre-training to 4K resolution with near-constant
cost through region-selective processing, achieving 4.3× fewer tokens than AnyRes while improving
high-resolution perception.

PTP (Pyramid Token Pruning) [44] offers training-free adaptive compression by combining bottom-up
visual saliency with top-down instruction guidance. For each visual token j, the instruction-guided
importance is computed from attention scores in early LLM layers:

cj = max
q∈Q

Attnq→j (16)

where Q is the set of instruction token indices and Attnq→j is the attention from instruction token
q to visual token j. This captures which visual regions are most relevant to the user’s query. The
bottom-up saliency bj is derived from intermediate vision encoder layers. The final importance score
combines both signals:

sj = αcj + (1− α)bj (17)

where α ∈ [0, 1] balances instruction guidance versus visual saliency. Empirically, α = 0.5 works
well for general tasks, while OCR-heavy tasks prefer lower α (relying more on visual saliency) and
open-domain reasoning benefits from higher α. PTP achieves 50% token reduction with negligible
accuracy loss, and can even improve performance by filtering noisy tokens.

Table 4 compares token counts and computational costs across resolution strategies for typical image
sizes. Fixed resolution maintains constant cost but loses detail; tiling preserves detail but scales
quadratically with resolution; compression methods offer intermediate trade-offs.

2.8 Alternative Architectures

Beyond the standard single-encoder paradigm, two alternative approaches have emerged: multi-
encoder systems that combine complementary representations, and encoder-free architectures that
bypass separate vision encoders entirely.

Multi-Encoder Architectures. Different vision encoders excel at different tasks, motivating ar-
chitectures that combine multiple encoders. Given K encoders producing feature maps {Fk}Kk=1,
multi-encoder fusion computes:

Ffused = Aggregate (F1,F2, . . . ,FK ;Q) (18)

where Q are learnable query tokens. Aggregation strategies range from static fusion (Cambrian-1’s
Spatial Vision Aggregator [71]) to dynamic routing (SCOPE’s Mixture-of-Encoders [93]). Section 3.6
examines specific implementations and their trade-offs.

Encoder-Free Architectures. Encoder-free architectures process raw pixels directly through the
language model. Given image patches {xi

p}, these are projected directly into the language model’s
embedding space:

hi = Wpatch · flatten(xi
p) + eipos (19)

bypassing a separate vision encoder entirely. Fuyu-8B from Adept pioneered this approach, and
EVE [21] advanced it through vision-centric supervision. SAIL [38] demonstrates that scaled encoder-
free models can match modular MLLMs, achieving visual representation capabilities comparable to
ViT-22B. Section 3.7 examines specific implementations.

12



Table 4: Resolution Strategy Comparison: Token counts and relative compute for 1MP (1024× 1024)
and 4MP (2048 × 2048) images. Assumes patch size p = 14 and tile size 336px. AnyRes counts
include the global thumbnail view. PS = Pixel Shuffle (space-to-depth); MLP = learned token merging.
Compute is relative to fixed 336px baseline.

Strategy 1MP Image 4MP Image Example

Tokens Compute Tokens Compute

Fixed Resolution
Fixed (224px) 256 0.4× 256 0.4× CLIP (original)
Fixed (336px) 576 1.0× 576 1.0× LLaVA-1.5
Fixed (384px) 729 1.3× 729 1.3× SigLIP-SO400M
Fixed (448px) 1,024 1.8× 1,024 1.8× InternVL 1.0
Fixed (512px) 1,296 2.3× 1,296 2.3× SigLIP2
Fixed (518px) 1,369 2.4× 1,369 2.4× DINOv2

Tiling (AnyRes)
AnyRes (no compression) 5,760 10× 21,312 37× LLaVA-NeXT
AnyRes + PS (r=2) 1,440 2.5× 5,328 9.3× InternVL 2.0
AnyRes + PS (r=3) 640 1.1× 2,368 4.1× SmolVLM

Native Resolution
Native (no compression) 5,329 9.3× 21,316 37× Qwen2-VL
Native + MLP (4×) 1,332 2.3× 5,329 9.3× Qwen2.5-VL

Adaptive/Hybrid
Hybrid CNN-ViT 1,620 2.8× 6,480 11× FastVLM
Token pruning (50%) 2,592 4.5× 10,368 18× PTP

3 Encoder Adoption Across VLM Families

This section examines the major vision encoder families and how they have been adopted across
VLM architectures. We organize by encoder family rather than VLM family to highlight how the
same foundational encoders appear across different systems, revealing patterns in encoder selection,
adaptation, and evolution.

3.1 OpenAI CLIP Family

OpenAI’s CLIP ViT encoders established the foundation for vision-language modeling, with the
majority of VLMs published in 2023 using CLIP variants as documented in Table 10. Two variants
dominate: CLIP ViT-L/14 with 304 million parameters and CLIP ViT-H/14 with 632 million
parameters.

The LLaVA family [47] demonstrated that CLIP encoders combined with architectural simplicity
could achieve strong results. The original LLaVA, released in April 2023, connected a frozen CLIP
ViT-L/14 encoder to Vicuna through a single linear projection layer. LLaVA keeps the vision
encoder frozen throughout training: Stage 1 freezes both the encoder and LLM while training only
the projection matrix, and Stage 2 freezes the encoder while training the LLM and projection. This
frozen-encoder strategy preserves pretrained visual representations while reducing training compute.
LLaVA-1.5 in October 2023 maintained CLIP ViT-L/14 but processed images at 336 pixels rather
than 224, with a two-layer MLP replacing the linear projection. LLaVA-NeXT [46] in January 2024
introduced AnyRes dynamic resolution processing, dividing images into grid configurations selected
by aspect ratio.

Apple’s MM1 [53] in March 2024 used CLIP ViT-H/14 and conducted ablation studies showing
that vision encoder quality and training data matter more than connector complexity.

Other notable CLIP-based VLMs include Phi-3.5-Vision and Phi-4-Vision from Microsoft using
CLIP ViT-L/14, the Ferret series from Apple for referring and grounding tasks, Yi-VL from 01.AI
using CLIP ViT-H/14, and Molmo [19] from AI2 which prioritized full openness by releasing the
PixMo training dataset alongside model weights and code.
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The CLIP family has several limitations that motivated the development of SigLIP: softmax-based
contrastive loss requiring large batch sizes, primarily English training data, and representations
optimized for image-level rather than dense features. SigLIP rapidly became the preferred alternative.

3.2 Google SigLIP Family

SigLIP emerged to address CLIP’s practical limitations: the softmax contrastive loss requires large
batch sizes (32K+ for optimal performance), training data was primarily English, and representations
capture image-level semantics without dense spatial features. SigLIP-SO400M, with 400 million
parameters, addresses these through its sigmoid loss described in Section 2.3. Operating on individual
image-text pairs rather than requiring batch comparisons, this formulation improves training stability
and enables better scaling.

Google’s PaliGemma [9] series in July 2024 established SigLIP-SO400M as standard, with
PaliGemma 2 scaling to 28B parameters while retaining the same encoder. Gemma 3 in March 2025
added dynamic resolution processing supporting images up to 896×896 pixels.

The LLaVA family transitioned from CLIP to SigLIP-SO400M with LLaVA-OneVision [40] in
August 2024, unifying image and video understanding within a single framework. DeepSeek-VL [48]
in March 2024 paired SigLIP with SAM-B for fine-grained spatial details through a three-stage
training pipeline, while DeepSeek-VL2 [81] in December 2024 streamlined to SigLIP-SO400M with
Mixture of Experts integration.

Other adopters include Idefics2/3 from HuggingFace, SmolVLM, MiniCPM-V 2.6/4.5, Nemotron
Nano V2, Baichuan-Omni, and VideoLLaMA 3. SigLIP 2 in 2025 extended the family with
multilingual capabilities and improved dense features, adopted by Qwen3-VL and Jina-VLM.

3.3 EVA-CLIP Family

EVA-CLIP explored whether larger encoders with richer pretraining could improve VLM perfor-
mance. While CLIP and SigLIP remain under 700M parameters, EVA-CLIP variants range from
EVA-CLIP-g with 1 billion parameters to EVA2-CLIP-E at 4.4 billion, combining masked image
modeling pretraining with contrastive learning.

CogVLM [78] and CogVLM2 [30] from Tsinghua/Zhipu AI use EVA2-CLIP-E with a visual expert
architecture that adds dedicated vision processing pathways within the transformer, enabling deeper
vision-language fusion without modifying language model weights. CogVLM2 supports resolutions
up to 1344×1344 pixels. The Emu series from BAAI uses EVA-CLIP-g for the original Emu and
EVA-CLIP-E for Emu2.

The trade-off is computational cost versus capacity: EVA-CLIP-E provides richer features than
400M-class encoders, but the 10× parameter increase must be justified by application requirements.

3.4 InternViT Family

InternViT-6B, introduced in InternVL 1.0 [15] in December 2023, was designed to address the
disparity between LLM scale and vision encoder scale. The encoder uses progressive alignment as
described in Section 2.5, training on 4.98 billion image-text pairs.

InternVL 1.5 and 2.0 in 2024 added dynamic tiling with Pixel Shuffle token reduction, particularly for
document understanding. InternVL 2.5 [14] in December 2024 expanded to 78B total parameters with
choices between InternViT-300M and InternViT-6B. InternVL 3.5 in August 2025 introduced
Vision Reconstruction, a self-supervised objective requiring masked image reconstruction.

NVIDIA’s NVLM [17] in September 2024 adopted InternViT-6B-448px to compare architectures.
Holding the encoder constant while varying connector design across decoder-only NVLM-D, cross-
attention NVLM-X, and hybrid NVLM-H variants, they found decoder-only approaches match more
complex designs.
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Figure 5: Resolution handling strategies for vision encoders. Fixed resolution resizes images to a
standard size (e.g., 336×336), producing a fixed token count (576) but losing fine details. AnyRes
tiling divides high-resolution images into a grid of tiles plus a global thumbnail, with each view
encoded separately and concatenated; a 2×3 grid yields (2× 3 + 1)× 576 = 4032 tokens, where
576 is the per-tile count and +1 accounts for the global view. Native resolution processes images
at their original aspect ratio with variable patch counts, using M-RoPE position encoding to handle
arbitrary dimensions.

3.5 Custom and Proprietary Encoders

Several organizations have developed custom vision encoders tailored to their specific VLM ar-
chitectures. These encoders often prioritize native resolution processing, efficiency, or specialized
capabilities.

NaViT-Style Native Resolution Encoders. The original Qwen-VL [4] in August 2023 employed
ViT-bigG with 1.9 billion parameters, initialized from OpenCLIP’s pretrained weights. Unlike frozen-
encoder approaches, Qwen-VL trains the encoder at progressively higher resolutions before freezing
it during instruction tuning. Qwen2-VL [76] in October 2024 introduced a 675M NaViT encoder with
native resolution processing and M-RoPE positional encoding as described in Section 2.5, shown in
Figure 5. Qwen2.5-VL continued this approach with refined training.

Other NaViT-style adopters include Ovis2.5 with a 300M NaViT and learnable visual embedding
table, MiMo-VL from Xiaomi using a 675M NaViT based on Qwen2.5-ViT, and QVQ-72B-Preview
which inherits the Qwen2-VL encoder for reasoning tasks.

Efficiency-Focused Encoders. FastVLM [74] from Apple in December 2024 introduced
FastViTHD, a 150M hybrid CNN-ViT architecture generating 3.2× fewer tokens than standard
approaches while maintaining competitive performance. Kimi-VL from Moonshot AI uses MoonViT
with 400 million parameters, enabling competitive reasoning performance with only 2.8B activated
parameters.

Scale-Focused Encoders. Step-3 from StepFun employs EVA-CLIP 5B, one of the largest encoders
in production VLMs, indicating that some applications benefit from encoder capacity beyond the
typical 300M–700M range.

Cross-Attention Integration. Meta’s Llama 3.2-Vision [28] released in September 2024 uses a
632M parameter ViT-H/14 with Flamingo-style gated cross-attention layers interleaved with the
language model transformer blocks. This architectural choice differs from the dominant decoder-only
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concatenation approach, enabling the vision encoder to remain constant while the language model
scales from 11B to 90B parameters.

Custom Training. GLM-4.1V-Thinking and GLM-4.5V from Zhipu AI initialize from Apple’s
AIMv2-Huge [24] and fine-tune for reasoning tasks using Reinforcement Learning with Curriculum
Sampling (RLCS). MiniMax-VL-01 trains a 303M ViT encoder from scratch on 694 million image-
caption pairs, demonstrating that encoder-from-scratch approaches remain viable when sufficient
training data is available.

3.6 Multi-Encoder Approaches

Multi-encoder architectures combine complementary encoders through aggregation functions as for-
malized in Section 2.6 and illustrated in Figure 6. Cambrian-1 [71] validated the complementarity hy-
pothesis by combining four encoders through their Spatial Vision Aggregator: CLIP ViT-L/14@336,
SigLIP-SO400M/14@384, ConvNeXt-XXL@1024, and DINOv2 ViT-L/14@518. Ablation studies
confirmed that no single encoder matched the combination across benchmarks.

Eagle [63] combines CLIP, ConvNeXt, Pix2Struct, and EVA-02 through Pre-Alignment training
that prepares encoders for mixture before VLM training. SCOPE [93] addresses the computational
overhead of 4.3× for Cambrian-1 through dynamic routing via Mixture of Encoder Experts, reducing
cost by 24 to 49 percent while maintaining performance.

Agglomerative Distillation. Rather than fusing encoders at inference time, training-time distillation
compresses multiple teachers into a single student. AM-RADIO [60] distills CLIP, DINOv2, and SAM
simultaneously, producing outputs compatible with all teachers through multi-head distillation
losses. RADIOv2.5 [29] addresses resolution mode shifts, teacher imbalance, and excessive output
tokens through multi-resolution training and rebalanced losses. For VLM integration, C-RADIO
variants add token compression; Nemotron Nano V2 VL [20] uses c-RADIOv2-VLM-H as its vision
encoder. E-RADIO achieves 7× faster inference than teacher models, indicating that distillation can
approximate multi-encoder diversity at single-encoder cost.

3.7 Encoder-Free Architectures

Encoder-free architectures question a fundamental assumption: is a separate pretrained vision encoder
necessary, or can language models learn visual perception directly? These approaches bypass
pretrained vision encoders entirely, using either direct patch projection as described in Equation 19 or
discrete tokenization.

Fuyu-8B from Adept pioneered direct patch projection, processing image patches through a linear
layer without vision-specific pretraining. EVE [21] and EVEv2 from BAAI advanced this approach
through vision-centric supervision, demonstrating that with appropriate training, encoder-free models
can match encoder-based alternatives on many benchmarks. ELVA [42] from CAS extended this
work to video understanding.

Chameleon [10] and Emu3/3.5 take an alternative approach using VQ-VAE for discrete visual tokeniza-
tion, treating images as token sequences analogous to text. SAIL [38] provides systematic scaling
analysis, finding that encoder-free models achieve comparable performance to modular MLLMs
when scaled appropriately, though with different cross-modal information flow patterns.

3.8 Document-Focused Encoders

Document understanding presents distinct challenges for vision encoding. Standard encoders trained
primarily on natural images often struggle with document characteristics: dense text at varying
scales, complex layouts with tables and figures, and semantic meaning conveyed through spatial
arrangements rather than visual appearance alone.

DeepSeek-OCR introduced DeepEncoder, a 380-million-parameter vision encoder specifically
optimized for OCR and document layout analysis. By training on massive document datasets rather
than general images, DeepEncoder develops representations attuned to the particular challenges
of text recognition, including font variation, image degradation, and multilingual scripts. This
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Figure 6: Multi-encoder fusion architecture (Cambrian-1). A single input image is processed by four
parallel encoders: CLIP (semantic features), SigLIP (text-aligned features), DINOv2 (spatial/struc-
tural features), and ConvNeXt (multi-scale features). The Spatial Vision Aggregator (SVA) uses
learnable latent tokens that cross-attend to all encoder outputs, producing unified visual tokens that
capture complementary information from each encoder family before feeding into the LLM.

specialization yields measurable improvements on document benchmarks compared to general-
purpose encoders of similar size.

PaddleOCR-VL [7] from Baidu adopted NaViT-style native resolution processing specifically for
multilingual document understanding. The ability to process documents at their original resolution
without information-destroying downsampling proves particularly valuable for documents containing
small text, fine lines in tables, or detailed figures.

DocOwl 2 [31] addressed multi-page documents through an H-Reducer architecture that compresses
page-level features while preserving cross-page reasoning capability. DocVLM [54] integrates an
OCR-based modality into existing VLMs, improving document understanding under tight token
budgets: with 64 learned queries, DocVLM raises DocVQA accuracy from 56.0% to 86.6% when
integrated with InternVL2.

Ocean-OCR [12] is a 3B-parameter MLLM employing a Native Resolution ViT for variable resolution
input. It was the first MLLM to outperform professional OCR systems such as TextIn and PaddleOCR
across diverse scenarios.

TextHawk2 [88] addresses OCR and visual grounding with 16× token compression through a resam-
pler architecture, achieving 78.4% accuracy on OCRBench with far fewer tokens than comparable
models.

DAVE [32] (Document and web Agents Vision Encoder) introduced a purpose-built encoder for
document understanding and web agent tasks through two-stage training: self-supervised pretraining
with masked autoencoding followed by supervised autoregressive pretraining. On document and web
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benchmarks, DAVE achieves 10.5% average improvement over SigLIP 2, with particularly strong
gains on web agent tasks.

4 Empirical Analysis

4.1 Encoder Adoption Trends

Vision encoder choices have shifted across the period covered by this survey. In 2023, CLIP
ViT-L/14 was the predominant choice, appearing in approximately 70% of published VLMs includ-
ing LLaVA, Fuyu-8B, and most models from that era. Researchers used OpenAI’s encoder for its
zero-shot capabilities, availability, and community support. The encoder had become a practical
default, though alternatives like EVA-CLIP and early InternVL experiments were exploring improved
training procedures.

The year 2024 marked a transition as alternatives gained traction. SigLIP’s improved training
objective attracted adoption from LLaVA-OneVision and the DeepSeek-VL series, while InternViT
demonstrated that purpose-built encoders could outperform adapted general-purpose alternatives.
Encoder choice became a deliberate design decision rather than a default.

By 2025, SigLIP 2 became the predominant choice for frontier models. Qwen3-VL, Gemma
3, and other leading VLMs adopted Google’s encoder for its multilingual capabilities, improved
dense features, and strong benchmark performance. This convergence is not absolute: InternViT
remains preferred for deep vision-language integration, while specialized encoders like DAVE address
document-centric applications. Encoder selection increasingly depends on target use cases rather
than defaults.

4.2 Connector Design Impact

As discussed in Section 2.6, connector complexity provides limited benefit compared to encoder
quality. Table 8 in the Appendix confirms that most recent models adopt simple MLP projectors.
Exceptions serve specific requirements: Ovis uses visual embedding tables for discrete quantization,
DocOwl 2 uses H-Reducer for multi-page compression, and cross-attention remains useful when
visual tokens must interface with language models at multiple depths.

4.3 Scaling and Token Efficiency

The relationship between encoder size and VLM performance is more nuanced than simple scal-
ing laws might suggest. While larger encoders generally improve raw visual representation qual-
ity, these improvements do not always translate proportionally to downstream VLM performance.
InternViT-6B, with twenty times the parameters of InternViT-300M, provides measurable gains
on vision-centric tasks but only marginal improvements on general VLM benchmarks. Similarly,
EVA-CLIP-18B shows limited practical advantage over EVA-CLIP-1B when integrated into complete
VLM systems. These observations suggest that beyond a certain threshold, the language model and
connector become limiting factors rather than the vision encoder’s representational capacity.

Resolution scaling follows a similar pattern of diminishing returns. The transition from 224 to 336
pixels yields improvements across nearly all tasks, while moving from 336 to 448 pixels benefits OCR
and document understanding where fine text details matter. Beyond 448 pixels, the benefits become
task-dependent: high-resolution processing helps for documents with small text or detailed charts but
provides negligible gains for general visual question answering about natural images. Resolution
requirements should be determined by target applications rather than maximized universally.

Table 5 quantifies these cost-performance trade-offs across encoder configurations, from single
encoders to multi-encoder architectures. The scaling from SigLIP-B/16 to SigLIP-SO400M requires
5×more computation but yields only a 4.8-point improvement on ImageNet and 3.6 points on VQAv2.
InternViT-6B consumes 19× the FLOPs of InternViT-300M while improving VQAv2 by less
than 2 points. Multi-encoder configurations like Cambrian’s four-encoder setup incur approximately
4.3× the computational cost of a single SigLIP encoder, though they achieve consistent improvements
on vision-centric tasks requiring spatial understanding. For general VQA where single encoders
already perform well, the multi-encoder overhead is harder to justify.
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Table 5: Vision Encoder Cost and Performance Trade-offs. Measurements use 336×336 input
resolution, batch size 1, FP16 precision, with VRAM measured on NVIDIA A100-80GB. GFLOPs
are for the vision encoder only. ImageNet is zero-shot top-1; VQAv2 follows standard protocols.

Configuration Encoder(s) Params GFLOPs VRAM Tokens ImageNet VQAv2

Single Encoder
Baseline CLIP ViT-B/16 86M 17.6 0.4GB 576 68.3 76.8
Standard CLIP ViT-L/14 304M 81.1 1.2GB 576 75.5 79.2
Standard SigLIP-B/16 93M 17.9 0.4GB 576 78.4 78.1
Recommended SigLIP-SO400M 400M 95.8 1.5GB 576 83.2 81.7
Frontier SigLIP 2 SO400M 400M 98.3 1.6GB 576 84.1 82.4
Standard InternViT-300M 304M 82.6 1.3GB 576 79.8 80.3
Large-scale InternViT-6B 5.9B 1,547 24GB 576 88.2 82.1
Self-supervised DINOv2-L 304M 81.6 1.2GB 576 86.3 73.2†

Self-supervised DINOv2-g 1.1B 298 4.8GB 576 86.5 –

Multi-Encoder
Dual SigLIP + DINOv2-L 704M 177 2.7GB 1,152 – –
Dual SigLIP + SAM-B 490M 134 1.9GB 1,152 – –
Comprehensive Cambrian (4 enc.) 2.1B 412 5.8GB 2,048+ – 77.8
SOTA coverage Eagle (5 enc.) 2.4B 489 6.4GB 2,500+ – 83.6
†DINOv2 requires text-aligned fine-tuning for VLM tasks.

Token efficiency has emerged as equally critical to parameter efficiency in late 2024 and 2025. A
384×384 image processed at 14×14 patch size yields 729 tokens before any connector processing.
High-resolution strategies compound this significantly: LLaVA-NeXT’s AnyRes can produce 2,880
tokens per image, while multi-encoder approaches generate over 2,000 tokens as shown in Table 5.
For reasoning models like QVQ-72B that generate thousands of tokens during extended thinking, the
visual token overhead becomes proportionally more burdensome.

Several token compression approaches address this overhead. FastV [11] prunes tokens receiving
low attention scores from the language model, achieving 45% reduction with minimal accuracy loss.
VisionZip [83] uses learned selection to retain informative tokens, pushing compression ratios to
75–93%. TextHawk2 [88] achieves 16× compression through resampler architecture rather than
post-hoc pruning. VTC-Bench [45] revealed that standard VLM benchmarks poorly evaluate these
methods: simple downsampling often matches sophisticated compression, with compression quality
mattering primarily for samples requiring fine-grained visual details, dense text, or spatial precision.

These efficiency pressures are reshaping encoder architecture. Approaches like Qwen2-VL’s NaViT
naturally produce variable token counts proportional to image information content, while Pixel
Shuffle operations in InternVL 2.0 reduce spatial dimensions while preserving information density.
The trend toward native resolution processing partially addresses efficiency by avoiding the token
overhead of tile-based approaches, though at the cost of increased architectural complexity.

4.4 Benchmarks for Vision Encoders

A distinctive challenge in vision encoder research is the absence of standardized evaluation protocols.
Unlike language models, which are routinely evaluated on fixed benchmarks with reproducible
metrics, vision encoders are assessed through heterogeneous methodologies that complicate cross-
encoder comparison. This heterogeneity reflects tension between two evaluation philosophies:
standalone evaluation that isolates encoder quality, and VLM-integrated evaluation that captures
real-world utility but confounds encoder quality with connector design, LLM capability, and training
procedures.

Table 6 organizes benchmarks for vision encoder evaluation by evaluation type and task category.
Standalone benchmarks finetune the encoder on classic vision tasks without any language component.
ImageNet classification measures category-level visual understanding and text-image alignment, with
scores above 80% now expected for production encoders. COCO and ADE20K evaluate spatial
localization and dense prediction respectively. For specialized applications, DocBank, DocLayNet,
and RICO-SCA assess document and UI understanding. This standalone approach isolates encoder
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Table 6: Benchmarks for Vision Encoder Evaluation. Standalone benchmarks evaluate encoder
representations directly through finetuning, while VLM-integrated benchmarks measure downstream
task performance within complete vision-language pipelines. Encoder sensitivity indicates how
strongly benchmark performance depends on encoder choice versus other factors.

Benchmark Task Category Primary Measure Encoder Sensitivity

Standalone Encoder Benchmarks
ImageNet Classification Zero-shot top-1 accuracy High
COCO Detection/Segmentation mAP, mask IoU High
ADE20K Semantic Segmentation mIoU High
DocBank Document Recognition Token-level F1 High
DocLayNet Layout Analysis mAP High
RICO-SCA UI Classification Classification accuracy Medium

VLM-Integrated: General Visual Understanding
VQAv2 Visual QA Accuracy Low (saturated)
GQA Compositional QA Accuracy Low (saturated)
MMBench Multi-ability Accuracy Medium
MME Perception + Cognition Score (perc./cog.) Medium
POPE Hallucination F1 score Medium
MMStar Multi-modal Reasoning Accuracy Medium
SEED-Bench Generative Understanding Accuracy Medium
BLINK Visual Perception Accuracy High

VLM-Integrated: Video Understanding
Video-MME Video Analysis Accuracy High

VLM-Integrated: Text and Document Understanding
DocVQA Document QA ANLS High
TextVQA Scene Text QA Accuracy High
OCRBench OCR Evaluation Accuracy High
ChartQA Chart Understanding Accuracy High
InfoVQA Infographic QA ANLS High
MMLongBench-Doc Long Document QA F1 High

VLM-Integrated: Reasoning and Knowledge
MMMU Multi-discipline Reasoning Accuracy Medium
MathVista Mathematical Reasoning Accuracy Medium
MATH-V Visual Math Problems Accuracy High
AI2D Science Diagrams Accuracy Medium
ScienceQA Science QA Accuracy Low

VLM-Integrated: Spatial and Grounding
RefCOCO/+/g Referring Expression Accuracy High
RealWorldQA Spatial Understanding Accuracy High
TallyQA Object Counting Accuracy High

quality from downstream integration effects but may not predict VLM performance, as representations
that excel at classification do not necessarily transfer optimally to language-conditioned tasks.

VLM-integrated benchmarks insert the encoder into a complete pipeline and measure downstream task
performance. General visual understanding benchmarks like VQAv2, GQA, and MMBench test broad
capabilities but have become relatively saturated for frontier encoders, meaning encoder improvements
yield diminishing returns on these metrics. In contrast, text-heavy benchmarks including DocVQA,
TextVQA, OCRBench, and ChartQA reveal encoder limitations in text recognition and document
understanding, areas where encoder choice has substantial impact. Reasoning-focused benchmarks
like MMMU and MathVista require combining visual perception with multi-step reasoning, testing
whether encoder representations support complex inference. Spatial benchmarks including RefCOCO
variants and counting tasks reveal whether encoders capture geometric structure beyond semantic
content.

Research across encoder families suggests that text-image alignment quality matters most for VLM
applications: encoders trained with contrastive objectives on high-quality paired data consistently
outperform those with weaker supervision. Dense feature quality affects spatial tasks, with self-
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supervised encoders like DINOv2 excelling at segmentation despite weaker text alignment. The lack
of standardization in evaluation reporting undermines reliable cross-encoder comparisons, as studies
vary in LLM and connector choice, training data overlap, resolution, and whether fine-tuning was
applied.

Impact of Encoder Selection. The “Encoder Sensitivity” column in Table 6 reveals that encoder
choice has high impact on vision-centric tasks but diminishing returns on language-dominated
benchmarks. Specifically:

• High sensitivity: Document understanding (DocVQA, OCRBench, ChartQA), spatial reasoning
(RefCOCO, RealWorldQA, TallyQA), fine-grained recognition (BLINK), and video analysis
(Video-MME). For these tasks, encoder selection and resolution handling directly determine
performance ceilings.

• Medium sensitivity: Multi-ability benchmarks (MMBench, MME, MMMU) where both vision
and language contribute. Here, encoder improvements yield measurable but not dominant gains.

• Low sensitivity: General VQA (VQAv2, GQA) and knowledge-heavy tasks (ScienceQA) where
benchmarks have saturated for modern encoders or language reasoning dominates. Switching from
CLIP ViT-L/14 to SigLIP 2 may yield only 1–2 point improvements.

This pattern suggests practitioners should invest in encoder selection primarily when targeting
document, spatial, or fine-grained visual tasks. For general-purpose VLMs, a modern baseline like
SigLIP-SO400M suffices; the marginal gains from larger or specialized encoders often do not justify
the computational overhead.

4.5 Bias and Safety Considerations

Vision encoders inherit biases from web-scale training data. CLIP and SigLIP models encode
demographic biases, geographic imbalances, and cultural assumptions that propagate to downstream
VLMs. Documented issues include lower accuracy on darker skin tones, geographic bias favoring
North America and Europe, and occupational stereotyping. MetaCLIP 2 [16] addresses some issues
through balanced sampling, but systematic bias auditing remains limited. Multilingual coverage
is uneven, with non-Latin scripts and low-resource languages lagging behind despite claims of
multilingual support. As VLMs power agentic systems for GUI interaction and robotics, encoder
failures could lead to harmful actions, and high-resolution text and face recognition raises surveillance
concerns.

5 Synthesis and Future Directions

5.1 Key Findings

Three design principles emerge from this analysis, directly addressing the questions posed in Sec-
tion 1:

Summary of Findings

1. Training over Scale: A well-trained 400M encoder outperforms a 6B encoder on most
tasks.

2. Resolution at the Encoder: Native resolution handling yields gains that post-processing
cannot recover.

3. Complementarity over Universality: No single encoder captures all visual features;
fusion helps.

Training Methodology Dominates Scale ❶❷. SigLIP 2’s sigmoid loss, multilingual data, and
dense feature objectives yield gains that parameter scaling alone cannot match. A 400M-parameter
encoder with superior training outperforms a 5.9B-parameter encoder on most VLM benchmarks
(Table 5). This finding has practical implications: practitioners should prioritize encoder training
quality over size when selecting components.
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Resolution Has Become an Encoder-Level Concern ❸. Native resolution processing in NaViT
and M-RoPE positional encoding preserve information that preprocessing discards. The shift from
fixed 224px to dynamic multi-resolution handling represents a fundamental architectural change,
not merely a hyperparameter adjustment. For document understanding and fine-grained recognition,
resolution handling at the encoder level proves more important than downstream processing.

No Single Encoder Captures All Visual Features ❹. Multi-encoder fusion (Cambrian-1, Eagle)
improves spatial and semantic understanding over any individual encoder, confirming that contrastive
and self-supervised objectives capture complementary information. The 4× computational overhead
of multi-encoder approaches is justified for applications requiring both semantic understanding and
spatial precision.

5.2 Future Directions

Several unresolved questions define the field’s trajectory ❺:

The Encoder-Free Trajectory. Encoder-free architectures (Fuyu, EVE, SAIL) demonstrate that
LLMs can learn visual perception directly. As language models scale and training data grows,
the value proposition of pretrained vision encoders faces fundamental questions. Will specialized
encoders remain essential for efficiency, or will unified architectures subsume them? Early evidence
suggests encoder-free models require substantially more training compute to match encoder-based
alternatives, but this gap may narrow.

Unified Visual-Text Tokenization. Chameleon and Emu3 process images and text through a single
vocabulary, eliminating the modality boundary entirely. This approach simplifies architecture but
requires rethinking how visual structure is captured. The trade-offs between discrete tokenization and
continuous representations remain underexplored, particularly for tasks requiring fine-grained spatial
understanding.

Resolution Scaling Beyond 4K. Document understanding and video processing push resolution
requirements beyond current encoder designs. Token efficiency becomes the limiting factor: a 4K
image at 14px patch size yields 50,000+ tokens before any compression. Architectural innovations in
selective attention, hierarchical processing, or learned compression will determine practical limits.

Encoder Specialization vs. Generalization. Purpose-built encoders like DAVE (documents) and
DeepEncoder (OCR) achieve strong domain performance but sacrifice generality. The emerging
question is whether the field will converge on universal encoders or fragment into task-specific
variants, mirroring the broader tension between foundation models and fine-tuned specialists.

Compressed-Domain Vision Encoding. Video codecs (HEVC, VVC, AV1) compute block par-
titioning, motion vectors, and frequency transforms as part of compression. These intermediate
representations encode edges, textures, and temporal structure that vision encoders must learn in-
dependently. For video understanding, where content typically arrives in compressed form, using
codec-derived features directly could avoid redundant computation. The challenge is that codec
representations optimize for reconstruction fidelity rather than semantic understanding. No published
work applies video codec internals as vision encoder inputs for VLMs, leaving this an open direction.

5.3 Practical Recommendations

Based on the empirical findings in Section 4, Table 7 provides decision guidance for practitioners:

For most applications, starting with SigLIP 2 variants provides a strong baseline. Add DINOv2 if
spatial tasks (segmentation, depth, referring expressions) matter. Use native resolution encoders for
documents. Consider encoder-free approaches only with substantial training compute budgets.

5.4 Closing Perspective

Returning to our opening questions: contrastive training with modern improvements (sigmoid loss,
multilingual data) yields the best general-purpose encoders ❶; training methodology dominates
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Table 7: Encoder Selection Guide by Application
Application Recommended Encoder Rationale

General-purpose VLM SigLIP 2 SO400M Best training methodology, multilin-
gual, dense features

Document understanding NaViT-style or DeepEncoder Native resolution preserves text de-
tails

Spatial reasoning DINOv2+SigLIP fusion Self-supervised features comple-
ment contrastive

Resource-constrained SigLIP 2 Base/Large 86M–303M parameters, maintains
quality

Maximum capability Multi-encoder (Cambrian-
style)

Captures complementary visual fea-
tures

Research/flexibility InternViT variants Open weights, well-documented

parameter scale by a wide margin ❷; native resolution handling has become essential for document
and fine-grained tasks ❸; multi-encoder fusion captures complementary features no single encoder
provides ❹; and the encoder-free trajectory remains viable but computationally expensive ❺.

The vision encoder’s role is changing. Whether these components remain distinct or merge into
natively multimodal systems, the principles identified here, namely training objective innovation,
resolution flexibility, and encoder complementarity, will continue to shape how machines perceive
the visual world.
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A Comprehensive Model Tables

This appendix provides exhaustive tables of vision encoders in VLMs, organized by multiple dimen-
sions to facilitate comparison and analysis.

A.1 Models by Connector Architecture

Table 8 categorizes VLMs by their vision-language connector design.

Table 8: VLMs Organized by Connector Architecture

Model Connector Type Description Date
Linear / MLP Projection

LLaVA Linear Single linear layer Apr 2023
LLaVA-1.5 2-layer MLP GELU activation Oct 2023
LLaVA-NeXT 2-layer MLP + AnyRes tiling Jan 2024
LLaVA-OneVision 2-layer MLP Unified image/video Aug 2024
PaliGemma/2 Linear Direct projection Jul 2024
Gemma 3 Soft-token MLP Token-level projection Mar 2025
InternVL 2.0+ Pixel Shuffle + MLP Token reduction Jul 2024
DeepSeek-VL2 MLP + Dynamic tiling Dec 2024
NVLM-D 2-layer MLP Decoder-only arch. Sep 2024
Molmo MLP Simple projection Sep 2024
SmolVLM Efficient MLP Optimized for size Apr 2025

Q-Former / Learnable Queries
BLIP-2 Q-Former 32 learnable queries Jan 2023
InstructBLIP Q-Former Instruction-aware Jun 2023
InternVL 1.0 QLLaMA Query-based extraction Dec 2023
MiniGPT-4 Q-Former Single projection layer Apr 2023

Cross-Attention / Perceiver
Flamingo Perceiver Resampler Gated cross-attention Apr 2022
Idefics Perceiver Resampler Open Flamingo-style Aug 2023
Idefics2 Perceiver + MLP Refined resampler Apr 2024
Qwen-VL Cross-attention Single-layer xattn Aug 2023
NVLM-X Cross-attention Gated xattn layers Sep 2024
NVLM-H Hybrid MLP + xattn combined Sep 2024
Llama 3.2-Vision Cross-attn adapters Interleaved layers Sep 2024

Visual Embedding Table
Ovis Embedding table Discrete quantization Jul 2024
Ovis 1.6 Embedding table + AnyRes Sep 2024
Ovis2/2.5 Embedding table Improved quantization Aug 2025

Specialized Connectors
Cambrian-1 SVA Spatial Vision Aggregator Jun 2024
Eagle Pre-Alignment Encoder alignment stage Aug 2024
DocOwl 2 H-Reducer Hierarchical reduction May 2024
MiniCPM-V Compression Adaptive compression Aug 2024
MM1 C-Abstractor Convolutional abstractor Mar 2024
Ferret-v2 DPE Dense Position Encoding Apr 2024

No Connector (Native)
Fuyu-8B Direct input Patches as tokens Oct 2023
EVE/EVEv2 Direct input Vision-centric training Jun 2024
Chameleon VQ tokens Discrete visual tokens May 2024

Continued on next page
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Table 8 – continued
Model Connector Type Description Date
Emu3 Native Unified tokenization Oct 2025

A.2 Models by Resolution Strategy

Table 9 organizes VLMs by their approach to handling image resolution.

Table 9: VLMs Organized by Resolution Strategy

Model Strategy Max Resolution Notes
Fixed Resolution

LLaVA Fixed 224px 224×224 Single resolution
LLaVA-1.5 Fixed 336px 336×336 Higher res baseline
BLIP-2 Fixed 224px 224×224 Q-Former compression
Flamingo Fixed 224px 224×224 Perceiver handles var.
MiniGPT-4 Fixed 224px 224×224 BLIP-2 backbone

Dynamic Tiling (AnyRes-style)
LLaVA-NeXT AnyRes 672–1344px Grid selection
LLaVA-OneVision AnyRes 672–1344px Unified img/video
InternVL 1.5+ Dynamic tiling 448–4096px Pixel Shuffle reduction
Qwen2-VL Naive Dynamic Variable Proportional tokens
DeepSeek-VL2 Dynamic tiling 1024px+ MoE integration
Phi-3.5-Vision Dynamic 1344px Aspect-aware
MiniCPM-V 2.6 Adaptive 1344px Compression
NVLM-D/X/H Dynamic 448–1792px Multi-tile
MM1.5 Dynamic 1344px Improved AnyRes

Native Resolution (NaViT-style)
Ovis2.5 Native Variable No resize
PaddleOCR-VL Native Variable Document focus
Fuyu-8B Native Variable Direct patches

High Fixed Resolution
DeepSeek-VL Fixed 1024px 1024×1024 Hybrid encoder
Qwen-VL Fixed 448px 448×448 Large ViT
InternVL 1.0 Fixed 448px 448×448 InternViT-6B
CogVLM2 Fixed 490px 490×490 EVA2-CLIP-E

Multi-Scale / Pyramid
Ferret-v2 Multi-scale Multiple DPE connector
Cambrian-1 Multi-encoder 384–512px 4 encoders
Eagle Multi-scale Variable Pre-alignment

A.3 Complete Chronological Model Database

Table 10 provides a complete chronological listing of all VLMs with their full specifications.

Table 10: Complete Chronological VLM Database (2023–2025). ∗Encoder trained from scratch.

Model Date Org. Encoder Connector Params
2023

Continued on next page
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Table 10 – continued
Model Date Org. Encoder Connector Params

BLIP-2 Jan Salesforce EVA-CLIP-g Q-Former 3B–12B
MiniGPT-4 Apr KAUST EVA-CLIP-g Q-Former 13B
LLaVA Apr UW-Madison CLIP ViT-L/14 Linear 7B–13B
InstructBLIP Jun Salesforce EVA-CLIP-g Q-Former 7B–13B
Emu Jul BAAI EVA-CLIP-g Causal 14B
Qwen-VL Aug Alibaba ViT-bigG Cross-attn 9.6B
Idefics Aug HuggingFace OpenCLIP Perceiver 9B–80B
Fuyu-8B Oct Adept None Direct 8B
LLaVA-1.5 Oct UW-Madison CLIP ViT-L/14 2-layer MLP 7B–13B
Ferret Oct Apple CLIP ViT-L/14 Spatial 7B–13B
CogVLM Nov Tsinghua EVA2-CLIP-E Visual expert 17B
Emu2 Dec BAAI EVA-CLIP-E Causal 37B
InternVL 1.0 Dec Shanghai AI InternViT-6B QLLaMA 26B

2024 Q1
LLaVA-NeXT Jan ByteDance CLIP ViT-L/14 MLP+AnyRes 7B–110B
TinyLLaVA Feb – CLIP/SigLIP MLP 1.4B–3.1B
Yi-VL Mar 01.AI CLIP ViT-H/14 MLP 6B–34B
DeepSeek-VL Mar DeepSeek SigLIP+SAM-B Hybrid 1.3B–7B
MM1 Mar Apple CLIP ViT-H/14 C-Abstractor 3B–64B
VL-Mamba Mar – CLIP ViT-L/14 Mamba 7B
Cobra Mar – CLIP+DINOv2 Mamba 7B

2024 Q2
Phi-3.5-Vision Apr Microsoft CLIP ViT-L/14 MLP 4.2B
InternVL 1.5 Apr Shanghai AI InternViT-6B PixelShuffle 2B–26B
Idefics2 Apr HuggingFace SigLIP-SO400M Perceiver+MLP 8B
Ferret-v2 Apr Apple CLIP (multi) DPE 7B–13B
Chameleon May Meta VQ-VAE Native 7B–34B
CogVLM2 May Tsinghua EVA2-CLIP-E Visual expert 19B
DocOwl 2 May Alibaba ViT H-Reducer 8B
Cambrian-1 Jun NYU 4 encoders SVA 8B–34B
EVE Jun BAAI None Direct 7B

2024 Q3
InternVL 2.0 Jul Shanghai AI InternViT PixelShuffle 1B–76B
Ovis Jul Alibaba SigLIP-SO400M Embed. table 9B
PaliGemma Jul Google SigLIP-SO400M Linear 3B
Idefics3 Aug HuggingFace SigLIP PixelShuffle 8B
LLaVA-
OneVision

Aug ByteDance SigLIP-SO400M MLP 0.5B–72B

Eagle Aug NVIDIA Multi-encoder Pre-Align 7B–13B
MiniCPM-V
2.6

Aug Tsinghua SigLIP Compression 8B

MM1.5 Sep Apple CLIP variants C-Abstractor 1B–30B
NVLM-D/X/H Sep NVIDIA InternViT-6B MLP/xattn 72B
Llama 3.2-
Vision

Sep Meta ViT-H/14 xattn adapter 11B–90B

Ovis 1.6 Sep Alibaba SigLIP-SO400M Embed. table 9B
Molmo Sep AI2 CLIP ViT-L/14 MLP 7B–72B
Emu3 Sep BAAI VQ-VAE Native 8B

2024 Q4
Qwen2-VL Oct Alibaba NaViT M-RoPE 2B–72B

Continued on next page
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Table 10 – continued
Model Date Org. Encoder Connector Params
Baichuan-
Omni

Oct Baichuan SigLIP MLP 7B

Pixtral 12B Oct Mistral ViT∗ Native 12B
FastVLM Dec Apple FastViTHD Efficient 0.5B–7B
InternVL 2.5 Dec Shanghai AI InternViT PixelShuffle 1B–78B
PaliGemma 2 Dec Google SigLIP-SO400M Linear 3B–28B
DeepSeek-VL2 Dec DeepSeek SigLIP-SO400M MLP+MoE 3B–27B
Ovis2 Dec Alibaba SigLIP Embed. table 8B
Phi-4-Vision Dec Microsoft CLIP+ MLP 14B

2025
Janus-Pro Jan DeepSeek SigLIP-L Decoupled 1.5B–7B
EVEv2 Feb BAAI None Direct 7B
Gemma 3 Mar Google SigLIP-SO400M Soft-token 4B–27B
ELVA Mar CAS None Direct 7B
Llama 4 Apr Meta Proprietary Early fusion 109B+
SmolVLM Apr HuggingFace SigLIP-SO400M Efficient 256M–2B
Kimi-VL Apr Moonshot AI MoonViT MLP 16B
MiMo-VL Jun Xiaomi NaViT MLP 7B
GLM-4.1V Jul Zhipu AI AIMv2-Huge MLP 9B
InternVL 3.5 Aug Shanghai AI InternViT+ViR PixelShuffle 1B–78B
Ovis2.5 Aug Alibaba NaViT Embed. table 2B–9B
DeepSeek-
OCR

Oct DeepSeek DeepEncoder MLP 7B

PaddleOCR-
VL

Oct Baidu NaViT-style MLP 0.9B

Emu3.5 Oct BAAI Native Unified –
Qwen3-VL Nov Alibaba SigLIP 2

SO400M
M-RoPE 2B–72B

Nemotron
Nano

Nov NVIDIA SigLIP MLP 4B

Jina-VLM Dec Jina AI SigLIP 2
SO400M

MLP 1.5B

A.4 Video-Capable VLMs

Table 11 lists VLMs with explicit video understanding capabilities and their temporal processing
strategies.

Table 11: Video-Capable VLMs and Temporal Processing
Model Date Vision Encoder Temporal Strategy Max Frames Params
Video-ChatGPT Jun 2023 CLIP ViT-L/14 Spatial-temporal pooling 100 7B
VideoLLaVA Nov 2023 LanguageBind Joint image-video 8 7B
LLaVA-NeXT-Video Apr 2024 CLIP/SigLIP AnyRes + temporal 32 7B–34B
LLaVA-OneVision Aug 2024 SigLIP-SO400M Unified frames 32 0.5B–72B
Qwen2-VL Oct 2024 NaViT + M-RoPE 3D position encoding 768 2B–72B
InternVL 2.0 Jul 2024 InternViT Frame sampling 64 8B–76B
LongVA Jun 2024 SigLIP Long context 2000 7B
Oryx Sep 2024 OryxViT Dynamic resolution 64 7B–34B
ELVA Mar 2025 Encoder-free Direct video 64 7B
VideoLLaMA 2 Jun 2024 CLIP ViT-L Spatial-temporal 16 7B–72B
VideoLLaMA 3 Jan 2025 SigLIP/DFN Temporal pooling 64 2B–72B

A.5 Benchmark Performance Summary

Table 12 provides representative benchmark scores for major VLMs across key evaluation dimensions.
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Table 12: Representative Benchmark Performance (Open Models, 2024–2025)
Model MMBench MMMU MathVista DocVQA OCRBench RealWorldQA
Open Models (≤10B)
Qwen2-VL-7B 83.0 54.1 58.2 94.5 845 70.1
InternVL2-8B 81.7 51.8 58.3 91.6 794 64.4
LLaVA-OneVision-7B 80.8 48.8 63.2 87.5 622 60.2
MiniCPM-V 2.6 78.0 49.8 60.6 90.8 852 65.2
Idefics3-8B 77.4 47.6 54.3 87.1 710 60.5

Open Models (>10B)
Qwen2-VL-72B 86.5 64.5 70.5 96.5 855 77.8
InternVL2.5-78B 85.8 68.0 72.3 95.7 857 74.1
Llama 3.2-90B 80.5 60.3 57.3 90.1 763 68.2
NVLM-D-72B 82.6 59.7 65.2 92.6 785 69.5
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